Cerberus Framework

Overview

The Cerberus Framework (CF) is a proprietary module and custom game development
framework, built as a personal codebase specifically designed for my own projects. It is not a
third-party asset, but rather a tailored solution that serves as a core component of the game's

technical architecture.

CF streamlines essential functionalities and operations, utilizing asynchronous functions,
structured communication patterns, and dependency injection to enhance performance and
scalability. The framework follows the Model-View-Controller (MVC) pattern, ensuring clean

separation of concerns and maintainability throughout the development process.

By providing a robust, modular foundation for various game-related tasks, CF
emphasizes both flexibility and efficiency. While intended for personal use, access to the Git

repository can be granted upon request.



Dependencies

CF leverages the power of four core assets to enhance its functionality and performance;
1. UniTask

e UniTask is a highly efficient asynchronous programming library for Unity that enhances
performance, particularly in environments where multiple tasks need to be handled
concurrently.

e It offers an alternative to Unity's built-in coroutines, providing better control over
asynchronous operations with lower overhead.

e Improved performance due to lightweight task handling.

e Fasy integration for managing asynchronous processes, allowing CF to handle game

events, loading screens with minimal performance impact.

2. VContainer

e VContainer is a dependency injection (DI) framework designed for Unity. It promotes
clean architecture principles by decoupling dependencies, making the framework more
maintainable and scalable.

e [t enhances code structure by ensuring that different components of the game
communicate in a loosely coupled manner, adhering to SOLID principles.

e Facilitates a modular design, enabling easier management of components and services.

e Improves scalability by making it easier to integrate new features and functionalities

without tightly coupling them with existing systems.

3. MessagePipe

e MessagePipe is a lightweight, fast messaging system used for event management within
Unity. It efficiently handles communication between different game objects or systems
without creating direct dependencies between them.

e [t serves as the backbone of the framework's event-driven architecture, providing a clear

and structured way for components to communicate through messages and signals.



e Enables decoupled communication between systems, allowing for clean and organized
event management.
e Reduces complexity in managing game events (e.g., Ul updates, player actions, or game

state changes) by centralizing messaging.

4. Unity's Addressables

Unity's Addressables system is utilized for efficient asset management and dynamic
loading of resources during gameplay. This system enables the framework to handle assets in a
more flexible manner, allowing developers to load and unload resources as needed. By using
Addressables, CF minimizes memory usage and enhances performance, particularly in larger

projects where resource management is crucial.



CF Structure

CF is organized into several key components, each contributing to the overall
functionality and efficiency of game development. These components include injection scripts,

managers and systems, scriptable objects, core scripts and template assets.
1. Injection Scripts

These scripts handle DI, ensuring that all required services and components are properly
instantiated and accessible throughout the game. By using DI, the framework promotes

modularity and decoupling, making systems more flexible and easier to manage or replace.
2. Managers and Systems

Managers are global components instantiated during the game's initialization. They

remain active throughout the entire gaming experience, providing core services and features.

Systems, in contrast to Managers, are localized and operate within specific gameplay
phases. They focus on tasks that are activated and deactivated based on the game's progression.
Examples include enemy spawning, level transitions, and in-game events, ensuring smooth and

responsive gameplay.
3. Scriptable Object Scripts

Scriptable Objects are used to store data that is shared across different systems or used to
configure various gameplay elements. These scripts define the logic and structure for managing

reusable data assets within the project.
4. Core Scripts

CF incorporates a comprehensive set of core scripts that establish the foundation for
various game systems and functionalities. This includes enumerations and constants that provide
clarity and consistency throughout the codebase, as well as event management scripts that

facilitate communication between different components. The framework utilizes the



Model-View-Controller (MVC) architecture to effectively separate concerns, enhancing

maintainability and scalability by managing game data, user interfaces, and control logic.

Additionally, scene controllers play a critical role in managing transitions between game
states and scenes, ensuring a smooth flow of gameplay through effective loading and unloading
processes. Utility scripts offer essential helper functions for common tasks, such as math
operations, string manipulation, and data handling, enhancing overall efficiency. Finally, Ul
scripts are dedicated to rendering and managing user interface elements, encompassing core
functionalities for buttons, popups, and HUD components to ensure a responsive and interactive

user experience.
5. Template Assets

The framework also comes with pre-built template assets, such as Ul elements (buttons,
popups), pool and sound dictionaries, scenes etc. which can be reused or modified based on the

needs of the project.



How CF Operates

CF manages the game's initialization and progression through a structured flow of scenes,
ensuring both the framework and game managers are properly set up before gameplay begins.

The process starts with two key scenes: the Preloader Scene and the Loading Scene.
1. Preloader Scene

The Preloader Scene is the first scene loaded when the game starts, and its primary role
is to initialize the core managers of CF and the other managers created by the user. This scene is
controlled entirely by CF and is inaccessible to the user, as its operations are internal and focused

on preparing the framework.

The preloader's injection scope script begins by initializing all the Managers
asynchronously. The Scene Controller in the preloader waits for these initialization operations
to complete. Once the managers are fully initialized and ready, the scene transitions to the next

step in the flow.
2. Loading Scene

After the preloader finishes, control is handed over to the Loading Scene, which marks
the beginning of game-specific setup. At this point, the Loading Manager is responsible for

transitioning to this scene, and its operations depend on the needs of the game.

In the Loading Scene, the game may start loading object pools, online data, or other
assets required for gameplay. The tasks performed in this scene vary depending on the project,

making it highly customizable.

The key difference between the Preloader Scene and the Loading Scene is that the
preloader is focused solely on preparing CF, while the loading scene sets up everything required
for the game itself. This division ensures that CF is fully operational before any game-specific
elements are initialized, providing a clear separation between framework setup and game

preparation.



3. Main Scene

Once the Loading Scene completes its operations—Iloading assets, object pools, or
online data—the control of the game is handed over to the user. The Loading Manager then

transitions the game to the Main Scene, which serves as the central hub for game interactions.

The Main Scene is the first scene where the player can interact with the game. In the
template provided by the framework, the main scene includes several buttons for common

actions, such as:

e New Game: Starts a new game instance, bringing the player into the gameplay
experience.

e CF Demo Scene: Provides access to the demo scene where the framework's features are
showcased.

e Settings Popup: Allows the player to adjust game settings, such as audio or controls.
4. CF Demo Scene

CF Demo Scene is a special scene within the template, designed to demonstrate all the
reusable template assets, systems, and Ul elements that the framework offers, giving the user an

opportunity to see its capabilities.

By transitioning from the Loading Scene to the Main Scene, and offering CF Demo
Scene for exploration, CF not only prepares the game environment but also provides a structured

way to demonstrate its modular assets and capabilities to developers.



Overview of Scripts

CF includes a variety of core scripts that are essential for its operation, providing

constants, events, and MV C architecture.

1. Constants Scripts

These scripts define various constant strings that are used throughout the framework by
different managers. They provide a centralized location for frequently used values, ensuring

consistency and ease of maintenance.

Animation Constants: Specific constants related to animation names and parameters,

allowing for streamlined animation management across different components.

Event Constants: These constants represent specific events within the framework,

ensuring that managers can respond correctly to various state changes.

2. Event Scripts

The event scripts are defined as structs and are used in conjunction with the MessagePipe
for communication between different components of the framework. Examples of event scripts

include:

e ManagerStateChanged: Triggered when the state of a manager changes, allowing other
systems to react appropriately.

o ApplicationFocusChanged: Indicates when the application gains or loses focus, useful
for managing game pauses or resuming.

e PopupOpened and PopupClosed: These events manage the opening and closing of Ul

popups, enabling smooth user interactions.

3. MVC Scripts

The MVC scripts are designed to implement the Model-View-Controller pattern,

providing a structured approach to manage the game's architecture. They serve as controllers that



manage the relationship between the View (Ul components) and Data (game state and logic).
Abstract interfaces define how these components interact, promoting separation of concerns and

maintainability.

4. System and Session Scripts

System Scripts encapsulate specific functionalities that handle localized tasks within the

game, such as enemy behavior, level transitions, and gameplay events.

Session Script acts as the overall manager for gameplay sessions. It initializes various
systems, starts the game, and manages win/fail conditions. The session script ensures that

gameplay flows smoothly and that all systems are coordinated effectively.

5. UI Scripts

The UI Scripts are essential for creating and managing the various components of the
user interface within the game. They facilitate interactions and enhance the overall user

experience by providing a range of reusable elements.

Component Scripts define the fundamental Ul components that players interact with.

Examples include CFButton, CFText, SafeArea and more.

Popup Scripts scripts are designed to create various modal windows that enhance user
interaction by providing essential functionality without disrupting the gameplay. Examples

include settings popup, pause popup, win and fail popups.

FlyTween Scripts are responsible for animating UI assets, specifically for creating
smooth transitions and movements. These scripts manage tweenable Ul assets, taking a start and
finish point along with a specified curve to create dynamic movements. This enhances the visual
appeal of text elements by allowing them to move in a smooth, engaging manner, improving the

overall user experience.



6. Utility Functions

The Utility Functions serve as a collection of extension scripts and helper utilities that
streamline and enhance the functionality of CF. These scripts are designed to simplify common

tasks and improve overall performance.

e Extension scripts extend existing functionalities, providing additional methods and
features that can be used across the framework. They enhance code readability and
maintainability by offering reusable solutions.

e The LockBin utility is a specialized script that manages binary locking mechanisms,
ensuring safe and efficient data handling. It helps prevent race conditions and ensures that
data access is controlled and synchronized properly.

e The JSON Serializer utility provides a convenient way to serialize and deserialize
objects to and from JSON format. This functionality is crucial for saving and loading
game data, enabling smooth transitions and state management within the game.

e Performance utilities focus on optimizing performance by offering tools for profiling and
monitoring. They help identify bottlenecks in the code, allowing developers to make
informed decisions about optimizations and enhancements, ensuring a smooth gameplay

experience.



Managers Overview

The Managers in CF are responsible for overseeing and coordinating different
functionalities within the game. Each manager plays a critical role in ensuring smooth operations

and enhancing the overall user experience.

1. AddressableManager

This manager is responsible for retrieving assets from Unity's Addressables system. It
facilitates efficient asset management by allowing for dynamic loading and unloading of

resources as needed during gameplay.

2. RemoteAssetManager

The RemoteAssetManager works with the Addressables system's remote functionality,
enabling the retrieval of assets from a remote catalog. This is particularly useful for games that
require frequent updates or downloadable content, as it allows for seamless integration of

external resources.

3. DataManager

The DataManager handles saving and loading JSON serialized storage defined by the
user. It provides a straightforward way to manage game data, ensuring that player progress and

settings can be easily saved and retrieved.

4. DeviceConfigurationManager

This manager detects the platform on which the game is running and allows users to
define the necessary changes for each platform. This ensures that the game operates optimally

across different devices and configurations.



5. InventoryManager

The InventoryManager manages the submission, commitment, or rollback of inventory
changes. While inventory items are defined by the user, the template includes predefined items

such as star and coin, providing a starting point for customization.

6. LoadingManager

The LoadingManager is responsible for switching between scenes, ensuring smooth
transitions and loading operations. It plays a key role in maintaining a seamless gameplay

experience.

7. PoolManager

This manager handles the pooling of defined pool items, optimizing resource
management and reducing instantiation overhead. By reusing objects, the PoolManager helps

improve performance and efficiency during gameplay.

8. SoundManager

The SoundManager is dedicated to handling background music and sound effects,
allowing for dynamic audio control throughout the game. It ensures that the audio experience is

engaging and responsive to gameplay events.

9. VibrationManager

This manager is responsible for managing device vibrations, enhancing the tactile
feedback of the game. It allows developers to implement vibrations for various actions,

contributing to a more immersive experience.



10. UI Interaction Managers
Several managers facilitate user interface interactions:

e PopupManager: Manages the display and behavior of popups within the game.

o TextTweenManager: Handles the tweening of text elements, creating smooth animations
for UI text.

o FlyTweenManager: Responsible for animating Ul elements along defined paths,

enhancing visual interactions.



